{ "id": "1108.4975", "version": "v1", "published": "2011-08-25T00:51:30.000Z", "updated": "2011-08-25T00:51:30.000Z", "title": "A bound on the number of points of a curve in projective space over a finite field", "authors": [ "Masaaki Homma" ], "comment": "9 pages, presented at the Fq10 conference", "categories": [ "math.AG" ], "abstract": "For a nondegenerate irreducible curve $C$ of degree $d$ in ${\\Bbb P}^r$ over ${\\Bbb F}_q$ with $r \\geq 3$, we prove that the number $N_q(C)$ of ${\\Bbb F}_q$-points of $C$ satisfies the inequality $N_q(C) \\leq (d-1)q +1$, which is known as Sziklai's bound if $r=2$.", "revisions": [ { "version": "v1", "updated": "2011-08-25T00:51:30.000Z" } ], "analyses": { "subjects": [ "14G15", "11G20", "14H25" ], "keywords": [ "finite field", "projective space", "sziklais bound", "nondegenerate irreducible curve" ], "tags": [ "conference paper" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.4975H" } } }