{ "id": "1108.4619", "version": "v1", "published": "2011-08-23T14:50:02.000Z", "updated": "2011-08-23T14:50:02.000Z", "title": "Weight reduction for cohomological mod $p$ modular forms over imaginary quadratic fields", "authors": [ "Adam Mohamed" ], "comment": "30 pages", "categories": [ "math.NT" ], "abstract": "Let $ F$ be an imaginary quadratic field and $\\mathcal{O}$ its ring of integers. Let $ \\mathfrak{n} \\subset \\mathcal{O} $ be a non-zero ideal and let $ p> 5$ be a rational inert prime in $F$ and coprime with $\\mathfrak{n}$. Let $ V$ be an irreducible finite dimensional representation of $ \\bar{\\mathbb{F}}_{p}[{\\rm GL}_2(\\mathbb{F}_{p^2})].$ We establish that a system of Hecke eigenvalues appearing in the cohomology with coefficients in $ V$ already lives in the cohomology with coefficients in $ \\bar{\\mathbb{F}}_{p}\\otimes det^e$ for some $ e \\geq 0$; except possibly in some few cases.", "revisions": [ { "version": "v1", "updated": "2011-08-23T14:50:02.000Z" } ], "analyses": { "keywords": [ "imaginary quadratic field", "weight reduction", "modular forms", "cohomological mod", "irreducible finite dimensional representation" ], "note": { "typesetting": "TeX", "pages": 30, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.4619M" } } }