{ "id": "1108.4373", "version": "v1", "published": "2011-08-22T16:36:56.000Z", "updated": "2011-08-22T16:36:56.000Z", "title": "Three layer $Q_2$-free families in the Boolean lattice", "authors": [ "Jacob Manske", "Jian Shen" ], "categories": [ "math.CO" ], "abstract": "We prove that the largest $Q_2$-free family of subsets of $[n]$ which contains sets of at most three different sizes has at most $(3 + 2\\sqrt {3})N/3 + o(N) \\approx 2.1547N + o(N)$ members, where $N = {n \\choose {\\lfloor n/2 \\rfloor}}$. This improves an earlier bound of $2.207N + o(N)$ by Axenovich, Manske, and Martin.", "revisions": [ { "version": "v1", "updated": "2011-08-22T16:36:56.000Z" } ], "analyses": { "keywords": [ "boolean lattice", "free family", "earlier bound", "contains sets" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.4373M" } } }