{ "id": "1108.4178", "version": "v1", "published": "2011-08-21T10:45:00.000Z", "updated": "2011-08-21T10:45:00.000Z", "title": "Congruences for Wolstenholme primes", "authors": [ "Romeo Mestrovic" ], "comment": "pages 16", "categories": [ "math.NT" ], "abstract": "A prime number $p$ is said to be a Wolstenholme prime if it satisfies the congruence ${2p-1\\choose p-1} \\equiv 1 \\,\\,(\\bmod{\\,\\,p^4})$. For such a prime $p$, we establish the expression for ${2p-1\\choose p-1}\\,\\,(\\bmod{\\,\\,p^8})$ given in terms of the sums $R_i:=\\sum_{k=1}^{p-1}1/k^i$ ($i=1,2,3,4,5,6)$. Further, the expression in this congruence is reduced in terms of the sums $R_i$ ($i=1,3,4,5$). Using this congruence, we prove that for any Wolstenholme prime, $$ {2p-1\\choose p-1}\\equiv 1 -2p \\sum_{k=1}^{p-1}\\frac{1}{k} -2p^2\\sum_{k=1}^{p-1}\\frac{1}{k^2}\\pmod{p^7}. $$ Moreover, using a recent result of the author \\cite{Me}, we prove that the above congruence implies that a prime $p$ necessarily must be a Wolstenholme prime. Applying a technique of Helou and Terjanian \\cite{HT}, the above congruence is given as the expression involving the Bernoulli numbers.", "revisions": [ { "version": "v1", "updated": "2011-08-21T10:45:00.000Z" } ], "analyses": { "subjects": [ "11B75", "11A07", "11B65", "11B68", "05A10" ], "keywords": [ "wolstenholme prime", "expression", "congruence implies", "prime number" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.4178M" } } }