{ "id": "1108.3886", "version": "v1", "published": "2011-08-19T03:51:41.000Z", "updated": "2011-08-19T03:51:41.000Z", "title": "On generic chaining and the smallest singular value of random matrices with heavy tails", "authors": [ "Shahar Mendelson", "Grigoris Paouris" ], "comment": "42 pages", "categories": [ "math.PR" ], "abstract": "We present a very general chaining method which allows one to control the supremum of the empirical process $\\sup_{h \\in H} |N^{-1}\\sum_{i=1}^N h^2(X_i)-\\E h^2|$ in rather general situations. We use this method to establish two main results. First, a quantitative (non asymptotic) version of the classical Bai-Yin Theorem on the singular values of a random matrix with i.i.d entries that have heavy tails, and second, a sharp estimate on the quadratic empirical process when $H=\\{\\inr{t,\\cdot} : t \\in T\\}$, $T \\subset \\R^n$ and $\\mu$ is an isotropic, unconditional, log-concave measure.", "revisions": [ { "version": "v1", "updated": "2011-08-19T03:51:41.000Z" } ], "analyses": { "keywords": [ "smallest singular value", "heavy tails", "random matrices", "generic chaining", "general chaining method" ], "note": { "typesetting": "TeX", "pages": 42, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.3886M" } } }