{ "id": "1108.3246", "version": "v1", "published": "2011-08-16T14:20:59.000Z", "updated": "2011-08-16T14:20:59.000Z", "title": "Some Theorems on Feller Processes: Transience, Local Times and Ultracontractivity", "authors": [ "René L. Schilling", "Jian Wang" ], "comment": "34 pages", "categories": [ "math.PR" ], "abstract": "We present sufficient conditions for the transience and the existence of local times of a Feller process, and the ultracontractivity of the associated Feller semigroup; these conditions are sharp for L\\'{e}vy processes. The proof uses a local symmetrization technique and a uniform upper bound for the characteristic function of a Feller process. As a byproduct, we obtain for stable-like processes (in the sense of R.\\ Bass) on $\\R^d$ with smooth variable index $\\alpha(x)\\in(0,2)$ a transience criterion in terms of the exponent $\\alpha(x)$; if $d=1$ and $\\inf_{x\\in\\R} \\alpha(x)\\in (1,2)$, then the stable-like process has local times.", "revisions": [ { "version": "v1", "updated": "2011-08-16T14:20:59.000Z" } ], "analyses": { "subjects": [ "60J25", "60J75", "35S05" ], "keywords": [ "local times", "feller processes", "ultracontractivity", "uniform upper bound", "local symmetrization technique" ], "note": { "typesetting": "TeX", "pages": 34, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.3246S" } } }