{ "id": "1108.3055", "version": "v1", "published": "2011-08-15T18:50:24.000Z", "updated": "2011-08-15T18:50:24.000Z", "title": "A combinatorial description of homotopy groups of spheres", "authors": [ "Roman Mikhailov", "Jie Wu" ], "comment": "27 pages, 1 figure", "categories": [ "math.AT", "math.GR" ], "abstract": "We give a combinatorial description of general homotopy groups of $k$-dimensional spheres with $k\\geq3$ as well as those of Moore spaces. For $n>k\\geq 3,$ we construct a finitely generated group defined by explicit generators and relations, whose center is exactly $\\pi_n(S^k)$.", "revisions": [ { "version": "v1", "updated": "2011-08-15T18:50:24.000Z" } ], "analyses": { "subjects": [ "55Q40", "55Q20", "20F36" ], "keywords": [ "combinatorial description", "general homotopy groups", "dimensional spheres", "moore spaces", "explicit generators" ], "note": { "typesetting": "TeX", "pages": 27, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.3055M" } } }