{ "id": "1108.2917", "version": "v2", "published": "2011-08-15T01:54:23.000Z", "updated": "2011-10-16T22:09:44.000Z", "title": "Correlations and critical behavior of the q-model", "authors": [ "Alexander V. St. John", "Harsh Mathur" ], "comment": "6 pages, 1 figure", "categories": [ "cond-mat.dis-nn", "cond-mat.mes-hall", "cond-mat.stat-mech" ], "abstract": "The q-model is a random walk model used to describe the flow of stress in a stationary granular medium. Here we derive the exact horizontal and vertical correlation functions for the q-model in two dimensions. We show that close to a critical point identified in earlier work these correlation functions have a universal scaling form reminiscent of thermodynamic critical phenomena. We determine the form of the universal scaling function and the associated critical exponents $\\nu$ and $z$.", "revisions": [ { "version": "v2", "updated": "2011-10-16T22:09:44.000Z" } ], "analyses": { "keywords": [ "critical behavior", "random walk model", "stationary granular medium", "universal scaling form reminiscent", "vertical correlation functions" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.2917S" } } }