{ "id": "1108.2521", "version": "v1", "published": "2011-08-11T21:10:57.000Z", "updated": "2011-08-11T21:10:57.000Z", "title": "Rainbow Matchings of size δ(G) in Properly Edge-colored Graphs", "authors": [ "Jennifer Diemunsch", "Michael Ferrara", "Casey Moffatt", "Florian Pfender", "Paul S. Wenger" ], "categories": [ "math.CO" ], "abstract": "A {\\it rainbow matching} in an edge-colored graph is a matching in which all the edges have distinct colors. Wang asked if there is a function f(\\delta) such that a properly edge-colored graph G with minimum degree \\delta and order at least f(\\delta) must have a rainbow matching of size \\delta. We answer this question in the affirmative; f(\\delta) = 6.5\\delta suffices. Furthermore, the proof provides a O(\\delta(G)|V(G)|^2)-time algorithm that generates such a matching.", "revisions": [ { "version": "v1", "updated": "2011-08-11T21:10:57.000Z" } ], "analyses": { "keywords": [ "properly edge-colored graph", "rainbow matching", "distinct colors", "minimum degree" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.2521D" } } }