{ "id": "1108.2361", "version": "v1", "published": "2011-08-11T09:37:24.000Z", "updated": "2011-08-11T09:37:24.000Z", "title": "An elementary proof of a congruence by Skula and Granville", "authors": [ "Romeo Mestrovic" ], "comment": "pages 7", "categories": [ "math.NT" ], "abstract": "Let $p\\ge 5$ be a prime, and let $q_p(2):=(2^{p-1}-1)/p$ be the Fermat quotient of $p$ to base 2. The following curious congruence was conjectured by L. Skula and proved by A. Granville $$ q_p(2)^2\\equiv -\\sum_{k=1}^{p-1}\\frac{2^k}{k^2}\\pmod{p}. $$ In this note we establish the above congruence by entirely elementary number theory arguments.", "revisions": [ { "version": "v1", "updated": "2011-08-11T09:37:24.000Z" } ], "analyses": { "subjects": [ "11B75", "11A07", "11B65", "05A19", "05A19" ], "keywords": [ "elementary proof", "elementary number theory arguments", "fermat quotient", "curious congruence" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.2361M" } } }