{ "id": "1108.1949", "version": "v1", "published": "2011-08-09T15:06:03.000Z", "updated": "2011-08-09T15:06:03.000Z", "title": "Instability of Ginzburg-Landau Vortices on Manifolds", "authors": [ "Ko-Shin Chen" ], "doi": "10.1017/S0308210511000795", "categories": [ "math.AP" ], "abstract": "We investigate two settings of Ginzburg-Landau posed on a manifold where vortices are unstable. The first is an instability result for critical points with vortices of the Ginzburg-Landau energy posed on a simply connected, compact, closed 2-manifold. The second is a vortex annihilation result for the Ginzburg-Landau heat flow posed on certain surfaces of revolution with boundary.", "revisions": [ { "version": "v1", "updated": "2011-08-09T15:06:03.000Z" } ], "analyses": { "keywords": [ "ginzburg-landau vortices", "vortex annihilation result", "instability result", "ginzburg-landau heat flow", "critical points" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.1949C" } } }