{ "id": "1108.1913", "version": "v1", "published": "2011-08-09T12:50:11.000Z", "updated": "2011-08-09T12:50:11.000Z", "title": "Conditions to Extend Partial Latin Rectangles", "authors": [ "Serge C. Ballif" ], "comment": "15 pages", "categories": [ "math.CO" ], "abstract": "In 1974 Allan Cruse provided necessary and sufficient conditions to extend an $r\\times s$ partial latin rectangle consisting of $t$ distinct symbols to a latin square of order $n$. Here we provide some generalizations and consequences of this result. Our results are obtained via an alternative proof of Cruse's theorem.", "revisions": [ { "version": "v1", "updated": "2011-08-09T12:50:11.000Z" } ], "analyses": { "subjects": [ "05B15" ], "keywords": [ "extend partial latin rectangles", "sufficient conditions", "partial latin rectangle consisting", "allan cruse", "distinct symbols" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.1913B" } } }