{ "id": "1108.1546", "version": "v1", "published": "2011-08-07T14:57:51.000Z", "updated": "2011-08-07T14:57:51.000Z", "title": "On divisibility of sums of Apery polynomials", "authors": [ "Hao Pan" ], "comment": "This is a preliminary draft", "categories": [ "math.NT", "math.CO" ], "abstract": "For any positive integers $m$ and $\\alpha$, we prove that $$\\sum_{k=0}^{n-1}\\epsilon^k(2k+1)A_k^{(\\alpha)}(x)^m\\equiv0\\pmod{n}, $$ where $\\epsilon\\in\\{1,-1\\}$ and $$ A_n^{(\\alpha)}(x)=\\sum_{k=0}^n\\binom{n}{k}^{\\alpha}\\binom{n+k}{k}^{\\alpha}x^k.$$", "revisions": [ { "version": "v1", "updated": "2011-08-07T14:57:51.000Z" } ], "analyses": { "subjects": [ "11A07", "11B65", "11B83", "05A10" ], "keywords": [ "apery polynomials", "divisibility" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.1546P" } } }