{ "id": "1108.1174", "version": "v1", "published": "2011-08-04T19:25:00.000Z", "updated": "2011-08-04T19:25:00.000Z", "title": "On the mod $p^7$ determination of ${2p-1\\choose p-1}$", "authors": [ "Romeo Mestrovic" ], "categories": [ "math.NT" ], "abstract": "In this paper we prove that for any prime $p\\ge 11$ holds $$ {2p-1\\choose p-1}\\equiv 1 -2p \\sum_{k=1}^{p-1}\\frac{1}{k} +4p^2\\sum_{1\\le i