{ "id": "1108.0135", "version": "v1", "published": "2011-07-31T05:01:49.000Z", "updated": "2011-07-31T05:01:49.000Z", "title": "Computing the Mertens function on a GPU", "authors": [ "Eugene Kuznetsov" ], "categories": [ "math.NT" ], "abstract": "A GPU implementation of an algorithm to compute the Mertens function in O(x2/3+{\\ko}) time is discussed. Results for x up to $10^{22}$, and a new extreme value for $M(x)/x^{1/2}$, -0.585768 ($M(x) \\approx -1.996 \\ast 10^9$ at $x \\approx 1.161 \\ast 10^{19}$), are reported.An approximate algorithm is used to examine values of M(x) for x up to $\\exp{(10^{15})}$.", "revisions": [ { "version": "v1", "updated": "2011-07-31T05:01:49.000Z" } ], "analyses": { "keywords": [ "mertens function", "gpu implementation", "extreme value" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1108.0135K" } } }