{ "id": "1107.5931", "version": "v1", "published": "2011-07-29T11:09:27.000Z", "updated": "2011-07-29T11:09:27.000Z", "title": "Fidelity spectrum and phase transitions of quantum systems", "authors": [ "P. D. Sacramento", "N. Paunkovic", "V. R. Vieira" ], "comment": "12 figures", "journal": "Physical Review A 84, 062318 (2011)", "categories": [ "quant-ph", "cond-mat.supr-con" ], "abstract": "Quantum fidelity between two density matrices, $F(\\rho_1,\\rho_2)$ is usually defined as the trace of the operator ${\\cal F}=\\sqrt{\\sqrt{\\rho_1} \\rho_2 \\sqrt{\\rho_1}}$. We study the logarithmic spectrum of this operator, which we denote by {\\it fidelity spectrum}, in the cases of the $XX$ spin chain in a magnetic field, a magnetic impurity inserted in a conventional superconductor and a bulk superconductor at finite temperature. When the density matrices are equal, $\\rho_1=\\rho_2$, the fidelity spectrum reduces to the entanglement spectrum. We find that the fidelity spectrum can be a useful tool in giving a detailed characterization of different phases of many-body quantum systems.", "revisions": [ { "version": "v1", "updated": "2011-07-29T11:09:27.000Z" } ], "analyses": { "subjects": [ "03.67.-a", "05.70.Fh", "74.20.Fg" ], "keywords": [ "phase transitions", "density matrices", "many-body quantum systems", "fidelity spectrum reduces", "entanglement spectrum" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review A", "doi": "10.1103/PhysRevA.84.062318", "year": 2011, "month": "Dec", "volume": 84, "number": 6, "pages": "062318" }, "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011PhRvA..84f2318S" } } }