{ "id": "1107.5652", "version": "v2", "published": "2011-07-28T09:03:34.000Z", "updated": "2012-03-09T16:57:56.000Z", "title": "Semi-classical states for the Nonlinear Schrödinger Equation on saddle points of the potential via variational methods", "authors": [ "Pietro d'Avenia", "Alessio Pomponio", "David Ruiz" ], "comment": "pre-peer version, to appear in J. Funct. Anal", "categories": [ "math.AP" ], "abstract": "In this paper we study semiclassical states for the problem $$ -\\eps^2 \\Delta u + V(x) u = f(u) \\qquad \\hbox{in} \\RN,$$ where $f(u)$ is a superlinear nonlinear term. Under our hypotheses on $f$ a Lyapunov-Schmidt reduction is not possible. We use variational methods to prove the existence of spikes around saddle points of the potential $V(x)$.", "revisions": [ { "version": "v2", "updated": "2012-03-09T16:57:56.000Z" } ], "analyses": { "subjects": [ "35J20", "35B40" ], "keywords": [ "nonlinear schrödinger equation", "saddle points", "variational methods", "semi-classical states", "superlinear nonlinear term" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.5652D" } } }