{ "id": "1107.5535", "version": "v2", "published": "2011-07-27T16:49:18.000Z", "updated": "2013-04-23T09:04:04.000Z", "title": "The canonical ring of a 3-connected curve", "authors": [ "Marco Franciosi", "Elisa Tenni" ], "categories": [ "math.AG" ], "abstract": "Let C be a projective curve either reduced with planar singularities or contained in a smooth algebraic surface. We show that the canonical ring R(C, \\omega_C)= \\oplus_{k \\geq 0} H^0(C, \\omega_C^k is generated in degree 1 if C is 3-connected and not (honestly) hyperelliptic; we show moreover that R(C, L)=\\oplus_{k \\geq 0} H^0(C,L^k)$ is generated in degree 1 if C is reduced with planar singularities and L is an invertible sheaf such that deg L_{|B} \\geq 2p_a(B)+1 for every B \\subseteq C.", "revisions": [ { "version": "v2", "updated": "2013-04-23T09:04:04.000Z" } ], "analyses": { "subjects": [ "14H20", "14C20", "14H51" ], "keywords": [ "canonical ring", "planar singularities", "smooth algebraic surface", "projective curve" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.5535F" } } }