{ "id": "1107.4862", "version": "v2", "published": "2011-07-25T08:05:48.000Z", "updated": "2012-10-11T08:27:46.000Z", "title": "Ehrhart polynomials of integral simplices with prime volumes", "authors": [ "Akihiro Higashitani" ], "comment": "11 pages", "categories": [ "math.CO" ], "abstract": "For an integral convex polytope $\\Pc \\subset \\RR^N$ of dimension $d$, we call $\\delta(\\Pc)=(\\delta_0, \\delta_1,..., \\delta_d)$ the $\\delta$-vector of $\\Pc$ and $\\vol(\\Pc)=\\sum_{i=0}^d\\delta_i$ its normalized volume. In this paper, we will establish the new equalities and inequalities on $\\delta$-vectors for integral simplices whose normalized volumes are prime. Moreover, by using those, we will classify all the possible $\\delta$-vectors of integral simplices with normalized volume 5 and 7.", "revisions": [ { "version": "v2", "updated": "2012-10-11T08:27:46.000Z" } ], "analyses": { "subjects": [ "52B20", "52B12" ], "keywords": [ "integral simplices", "prime volumes", "ehrhart polynomials", "normalized volume", "integral convex polytope" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.4862H" } } }