{ "id": "1107.4679", "version": "v1", "published": "2011-07-23T11:04:32.000Z", "updated": "2011-07-23T11:04:32.000Z", "title": "Average estimate for additive energy in prime field", "authors": [ "Alexey Glibichuk" ], "comment": "19 pages", "categories": [ "math.NT" ], "abstract": "Assume that $A\\subseteq \\Fp, B\\subseteq \\Fp^{*}$, $\\1/4\\leqslant\\frac{|B|}{|A|},$ $|A|=p^{\\alpha}, |B|=p^{\\beta}$. We will prove that for $p\\geqslant p_0(\\beta)$ one has $$\\sum_{b\\in B}E_{+}(A, bA)\\leqslant 15 p^{-\\frac{\\min\\{\\beta, 1-\\alpha\\}}{308}}|A|^3|B|.$$ Here $E_{+}(A, bA)$ is an additive energy between subset $A$ and it's multiplicative shift $bA$. This improves previously known estimates of this type.", "revisions": [ { "version": "v1", "updated": "2011-07-23T11:04:32.000Z" } ], "analyses": { "subjects": [ "11T23" ], "keywords": [ "additive energy", "prime field", "average estimate" ], "note": { "typesetting": "TeX", "pages": 19, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.4679G" } } }