{ "id": "1107.4586", "version": "v1", "published": "2011-07-22T17:47:14.000Z", "updated": "2011-07-22T17:47:14.000Z", "title": "Isolated Singularities of Nonlinear Polyharmonic Inequalities", "authors": [ "Steven D. Taliaferro" ], "comment": "31 pages", "categories": [ "math.AP" ], "abstract": "We obtain results for the following question where $m\\ge 1$ and $n\\ge 2$ are integers. {\\bf Question.} For which continuous functions $f\\colon [0,\\infty)\\to [0,\\infty)$ does there exist a continuous function $\\phi\\colon (0,1)\\to (0,\\infty)$ such that every $C^{2m}$ nonnegative solution $u(x)$ of 0 \\le -\\Delta^m u\\le f(u)\\quad \\text{in}\\quad B_2(0)\\backslash\\{0\\}\\subset {\\bb R}^n satisfies u(x) = O(\\phi(|x|))\\quad \\text{as}\\quad x\\to 0 and what is the optimal such $\\phi$ when one exists?", "revisions": [ { "version": "v1", "updated": "2011-07-22T17:47:14.000Z" } ], "analyses": { "subjects": [ "35B09", "35B33", "35B40", "35B44", "35B45", "35R45", "35J30", "35J91" ], "keywords": [ "nonlinear polyharmonic inequalities", "isolated singularities", "continuous function", "nonnegative solution" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.4586T" } } }