{ "id": "1107.4260", "version": "v2", "published": "2011-07-21T13:10:33.000Z", "updated": "2012-02-22T03:27:23.000Z", "title": "Weyl-Schouten Theorem for symmetric spaces", "authors": [ "Yuri Nikolayevsky" ], "comment": "Changed some proofs; corrected typos", "doi": "10.1112/plms/pds076", "categories": [ "math.DG" ], "abstract": "Let N be a symmetric space of dimension n > 5 whose de Rham decomposition contains no factors of constant curvature and let W be the Weyl tensor of N at some point. We prove that a Riemannian manifold whose Weyl tensor at every point is a positive multiple of W is conformally equivalent to N (the case N = R^n is the Weyl-Schouten Theorem).", "revisions": [ { "version": "v2", "updated": "2012-02-22T03:27:23.000Z" } ], "analyses": { "subjects": [ "53A30", "53C35", "53B20" ], "keywords": [ "symmetric space", "weyl-schouten theorem", "weyl tensor", "rham decomposition contains", "riemannian manifold" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.4260N" } } }