{ "id": "1107.3908", "version": "v1", "published": "2011-07-20T07:06:03.000Z", "updated": "2011-07-20T07:06:03.000Z", "title": "Finiteness of $A_n$-equivalence types of gauge groups", "authors": [ "Mitsunobu Tsutaya" ], "comment": "17 pages, 10 figures", "journal": "J. London Math. Soc. (2012) 85 (1): 142-164", "doi": "10.1112/jlms/jdr040", "categories": [ "math.AT" ], "abstract": "Let $B$ be a finite CW complex and $G$ a compact connected Lie group. We show that the number of gauge groups of principal $G$-bundles over $B$ is finite up to $A_n$-equivalence for $n<\\infty$. As an example, we give a lower bound of the number of $A_n$-equivalence types of gauge groups of principal $\\SU(2)$-bundles over $S^4$.", "revisions": [ { "version": "v1", "updated": "2011-07-20T07:06:03.000Z" } ], "analyses": { "keywords": [ "gauge groups", "equivalence types", "finiteness", "finite cw complex", "compact connected lie group" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 17, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.3908T" } } }