{ "id": "1107.3870", "version": "v2", "published": "2011-07-20T01:26:21.000Z", "updated": "2012-03-13T02:32:24.000Z", "title": "Redundant generating functions in lattice path enumeration", "authors": [ "Jong Hyun Kim" ], "categories": [ "math.CO" ], "abstract": "A redundant generating function is a generating function having terms which are not part of the solution of the original problem. We use redundant generating functions to study two path problems. In the first application we explain a surprising occurrence of Catalan numbers in counting paths that stay below the line y = 2x. In the second application we prove a conjecture of Niederhausen and Sullivan.", "revisions": [ { "version": "v2", "updated": "2012-03-13T02:32:24.000Z" } ], "analyses": { "subjects": [ "05A15" ], "keywords": [ "redundant generating function", "lattice path enumeration", "second application", "catalan numbers", "first application" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.3870K" } } }