{ "id": "1107.3719", "version": "v5", "published": "2011-07-19T14:09:49.000Z", "updated": "2014-08-27T20:07:53.000Z", "title": "Verbal subgroups of hyperbolic groups have infinite width", "authors": [ "Alexei Myasnikov", "Andrey Nikolaev" ], "comment": "To appear in Journal of the London Mathematical Society. 22 pages, 8 figures", "doi": "10.1112/jlms/jdu034", "categories": [ "math.GR" ], "abstract": "Let $G$ be a non-elementary hyperbolic group. Let $w$ be a group word such that the set $w[G]$ of all its values in $G$ does not coincide with $G$ or 1. We show that the width of verbal subgroup $w(G)=$ is infinite. That is, there is no such $l\\in\\mathbb Z$ that any $g\\in w(G)$ can be represented as a product of $\\le l$ values of $w$ and their inverses.", "revisions": [ { "version": "v4", "updated": "2014-05-15T21:12:04.000Z", "title": "Hyperbolic groups have infinite verbal width", "journal": null, "doi": null }, { "version": "v5", "updated": "2014-08-27T20:07:53.000Z" } ], "analyses": { "subjects": [ "20F67", "20F65" ], "keywords": [ "verbal subgroup", "infinite width", "non-elementary hyperbolic group", "group word" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 22, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.3719M" } } }