{ "id": "1107.3433", "version": "v2", "published": "2011-07-18T13:34:36.000Z", "updated": "2011-10-27T08:13:16.000Z", "title": "A Lower Bound for the Number of Group Actions on a Compact Riemann Surface", "authors": [ "James W. Anderson", "Aaron Wootton" ], "journal": "Algebr. Geom. Topol. 12 (2012), 19--35", "doi": "10.2140/agt.2012.12.19", "categories": [ "math.AG", "math.GT" ], "abstract": "We prove that the number of distinct group actions on compact Riemann surfaces of a fixed genus $\\sigma \\geq 2$ is at least quadratic in $\\sigma$. We do this through the introduction of a coarse signature space, the space $\\mathcal{K}_\\sigma$ of {\\em skeletal signatures} of group actions on compact Riemann surfaces of genus $\\sigma$. We discuss the basic properties of $\\mathcal{K}_\\sigma$ and present a full conjectural description.", "revisions": [ { "version": "v2", "updated": "2011-10-27T08:13:16.000Z" } ], "analyses": { "subjects": [ "57M60", "30F20", "14H37" ], "keywords": [ "compact riemann surface", "lower bound", "distinct group actions", "coarse signature space", "full conjectural description" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.3433A" } } }