{ "id": "1107.3371", "version": "v1", "published": "2011-07-18T07:44:49.000Z", "updated": "2011-07-18T07:44:49.000Z", "title": "Fractional Laplacian with singular drift", "authors": [ "Tomasz Jakubowski" ], "categories": [ "math.PR" ], "abstract": "For $\\alpha \\in (1,2)$ we consider the equation $\\partial_t u = \\Delta^{\\alpha/2} u - r b \\cdot \\nabla u$, where $b$ is a divergence free singular vector field not necessarily belonging to the Kato class. We show that for sufficiently small $r>0$ the fundamental solution is globally in time comparable with the density of the isotropic stable process", "revisions": [ { "version": "v1", "updated": "2011-07-18T07:44:49.000Z" } ], "analyses": { "keywords": [ "singular drift", "fractional laplacian", "divergence free singular vector field", "isotropic stable process", "fundamental solution" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.3371J" } } }