{ "id": "1107.2800", "version": "v1", "published": "2011-07-14T12:26:15.000Z", "updated": "2011-07-14T12:26:15.000Z", "title": "Discrete Schrödinger operators with random alloy-type potential", "authors": [ "Alexander Elgart", "Helge Krüger", "Martin Tautenhahn", "Ivan Veselić" ], "comment": "Proceedings of the Spectral Days 2010, Pontificia Universidad Cat\\'olica de Chile, Santiago", "categories": [ "math-ph", "math.MP", "math.SP" ], "abstract": "We review recent results on localization for discrete alloy-type models based on the multiscale analysis and the fractional moment method, respectively. The discrete alloy-type model is a family of Schr\\\"odinger operators $H_\\omega = - \\Delta + V_\\omega$ on $\\ell^2 (\\ZZ^d)$ where $\\Delta$ is the discrete Laplacian and $V_\\omega$ the multiplication by the function $V_\\omega (x) = \\sum_{k \\in \\ZZ^d} \\omega_k u(x-k)$. Here $\\omega_k$, $k \\in \\ZZ^d$, are i.i.d. random variables and $u \\in \\ell^1 (\\ZZ^d ; \\RR)$ is a so-called single-site potential. Since $u$ may change sign, certain properties of $H_\\omega$ depend in a non-monotone way on the random parameters $\\omega_k$. This requires new methods at certain stages of the localization proof.", "revisions": [ { "version": "v1", "updated": "2011-07-14T12:26:15.000Z" } ], "analyses": { "subjects": [ "82B44", "60H25", "35J10" ], "keywords": [ "random alloy-type potential", "discrete schrödinger operators", "discrete alloy-type model", "fractional moment method", "non-monotone way" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.2800E" } } }