{ "id": "1107.2680", "version": "v2", "published": "2011-07-13T21:39:22.000Z", "updated": "2011-11-14T17:27:14.000Z", "title": "Some integrals and series involving the Gegenbauer polynomials and the Legendre functions on the cut (-1,1)", "authors": [ "Radosław Szmytkowski" ], "comment": "LaTeX2e, 5 pages, some corrections and improvements made", "categories": [ "math.CA", "math-ph", "math.CV", "math.MP" ], "abstract": "We use the recent findings of Cohl [arXiv:1105.2735] and evaluate two integrals involving the Gegenbauer polynomials: $\\int_{-1}^{x}\\mathrm{d}t\\:(1-t^{2})^{\\lambda-1/2}(x-t)^{-\\kappa-1/2}C_{n}^{\\lambda}(t)$ and $\\int_{x}^{1}\\mathrm{d}t\\:(1-t^{2})^{\\lambda-1/2}(t-x)^{-\\kappa-1/2}C_{n}^{\\lambda}(t)$, both with $\\Real\\lambda>-1/2$, $\\Real\\kappa<1/2$, $-1-1/2$, $\\Real\\kappa<1/2$, $-1