{ "id": "1107.2493", "version": "v2", "published": "2011-07-13T09:10:34.000Z", "updated": "2011-08-04T21:32:01.000Z", "title": "Fundamental group of uniquely ergodic Cantor minimal systems", "authors": [ "Norio Nawata" ], "comment": "11 pages", "categories": [ "math.DS", "math.OA" ], "abstract": "We introduce the fundamental group ${\\mathcal F}(\\mathcal{R}_{G, \\phi})$ of a uniquely ergodic Cantor minimal $G$-system $\\mathcal{R}_{G, \\phi}$ where $G$ is a countable discrete group. We compute fundamental groups of several uniquely ergodic Cantor minimal $G$-systems. We show that if $\\mathcal{R}_{G, \\phi}$ arises from a free action $\\phi$ of a finitely generated abelian group, then there exists a unital countable subring $R$ of $\\mathbb{R}$ such that $\\mathcal{F}(\\mathcal{R}_{G, \\phi})=R_{+}^\\times$. We also consider the relation between fundamental groups of uniquely ergodic Cantor minimal $\\mathbb{Z}^n$-systems and fundamental groups of crossed product $C^*$-algebras $C(X)\\rtimes_{\\phi} \\mathbb{Z}^n$.", "revisions": [ { "version": "v2", "updated": "2011-08-04T21:32:01.000Z" } ], "analyses": { "subjects": [ "37B05", "37A20", "46L55" ], "keywords": [ "uniquely ergodic cantor minimal systems", "fundamental group", "countable discrete group", "free action", "finitely generated abelian group" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.2493N" } } }