{ "id": "1107.2159", "version": "v1", "published": "2011-07-11T22:24:02.000Z", "updated": "2011-07-11T22:24:02.000Z", "title": "Class field theory as a dynamical system", "authors": [ "Gunther Cornelissen" ], "comment": "5 pages", "categories": [ "math.NT", "math.DG", "math.DS", "math.FA" ], "abstract": "This is the text from a talk at the Arbeitstagung 2011, which can serve as an introduction to arxiv:1009.0736 and arXiv:1007.0907. I first discuss how a global field is determined by a certain dynamical system, and how this relates to abelian L-series determining those fields. I then discuss an analog in Riemannian geometry, and how it leads to a metric in the space of closed Riemannian manifolds.", "revisions": [ { "version": "v1", "updated": "2011-07-11T22:24:02.000Z" } ], "analyses": { "keywords": [ "class field theory", "dynamical system", "closed riemannian manifolds", "riemannian geometry", "global field" ], "note": { "typesetting": "TeX", "pages": 5, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.2159C" } } }