{ "id": "1107.2076", "version": "v1", "published": "2011-07-11T17:24:44.000Z", "updated": "2011-07-11T17:24:44.000Z", "title": "Finite Modules over $\\Bbb Z[t,t^{-1}]$", "authors": [ "Xiang-dong Hou" ], "comment": "24 pages", "categories": [ "math.RA", "math.AT" ], "abstract": "Let $\\Lambda=\\Bbb Z[t,t^{-1}]$ be the ring of Laurent polynomials over $\\Bbb Z$. We classify all $\\Lambda$-modules $M$ with $|M|=p^n$, where $p$ is a primes and $n\\le 4$. Consequently, we have a classification of Alexander quandles of order $p^n$ for $n\\le 4$.", "revisions": [ { "version": "v1", "updated": "2011-07-11T17:24:44.000Z" } ], "analyses": { "subjects": [ "16S34", "20K01", "57M27" ], "keywords": [ "finite modules", "laurent polynomials", "alexander quandles" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.2076H" } } }