{ "id": "1107.1480", "version": "v1", "published": "2011-07-07T18:37:14.000Z", "updated": "2011-07-07T18:37:14.000Z", "title": "Combinatorial R-trees as generalized Cayley graphs for fundamental groups of one-dimensional spaces", "authors": [ "Hanspeter Fischer", "Andreas Zastrow" ], "comment": "25 pages, 3 figures", "journal": "Geometriae Dedicata 163 (2013) 19-43", "categories": [ "math.GT" ], "abstract": "In their study of fundamental groups of one-dimensional path-connected compact metric spaces, Cannon and Conner have asked: Is there a tree-like object that might be considered the topological Cayley graph? We answer this question in the positive and provide a combinatorial description of such an object.", "revisions": [ { "version": "v1", "updated": "2011-07-07T18:37:14.000Z" } ], "analyses": { "subjects": [ "20F65", "20E08", "55Q52", "57M05", "55Q07" ], "keywords": [ "generalized cayley graphs", "fundamental groups", "one-dimensional spaces", "combinatorial r-trees", "one-dimensional path-connected compact metric spaces" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.1480F" } } }