{ "id": "1107.1221", "version": "v5", "published": "2011-07-06T18:48:56.000Z", "updated": "2014-03-12T18:10:18.000Z", "title": "Finiteness of K3 surfaces and the Tate conjecture", "authors": [ "Max Lieblich", "Davesh Maulik", "Andrew Snowden" ], "comment": "Final version", "categories": [ "math.AG", "math.NT" ], "abstract": "Given a finite field k of characteristic at least 5, we show that the Tate conjecture holds for K3 surfaces defined over the algebraic closure of k if and only if there are only finitely many K3 surfaces over each finite extension of k.", "revisions": [ { "version": "v5", "updated": "2014-03-12T18:10:18.000Z" } ], "analyses": { "subjects": [ "14G15", "14G10", "14J28" ], "keywords": [ "finiteness", "tate conjecture holds", "finite extension", "finite field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.1221L" } } }