{ "id": "1107.0896", "version": "v1", "published": "2011-07-05T15:10:20.000Z", "updated": "2011-07-05T15:10:20.000Z", "title": "Travelling graphs for the forced mean curvature motion in an arbitrary space dimension", "authors": [ "Régis Monneau", "Jean-Michel Roquejoffre", "Violaine Roussier-Michon" ], "comment": "36 pages, 6 figures", "categories": [ "math.AP" ], "abstract": "We construct travelling wave graphs of the form $z=-ct+\\phi(x)$, $\\phi: x \\in \\mathbb{R}^{N-1} \\mapsto \\phi(x)\\in \\mathbb{R}$, $N \\geq 2$, solutions to the $N$-dimensional forced mean curvature motion $V_n=-c_0+\\kappa$ ($c\\geq c_0$) with prescribed asymptotics. For any 1-homogeneous function $\\phi_{\\infty}$, viscosity solution to the eikonal equation $|D\\phi_{\\infty}|=\\sqrt{(c/c_0)^2-1}$, we exhibit a smooth concave solution to the forced mean curvature motion whose asymptotics is driven by $\\phi_{\\infty}$. We also describe $\\phi_{\\infty}$ in terms of a probability measure on $\\mathbb{S}^{N-2}$.", "revisions": [ { "version": "v1", "updated": "2011-07-05T15:10:20.000Z" } ], "analyses": { "keywords": [ "arbitrary space dimension", "travelling graphs", "dimensional forced mean curvature motion", "smooth concave solution", "construct travelling wave graphs" ], "note": { "typesetting": "TeX", "pages": 36, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.0896M" } } }