{ "id": "1107.0745", "version": "v1", "published": "2011-07-04T21:16:47.000Z", "updated": "2011-07-04T21:16:47.000Z", "title": "Potential theory of one-dimensional geometric stable processes", "authors": [ "Tomasz Grzywny", "MichaƂ Ryznar" ], "comment": "28 pages", "journal": "Colloq. Math. 129 (2012), 7-40", "categories": [ "math.PR" ], "abstract": "The purpose of this paper is to find optimal estimates for the Green function and the Poisson kernel for a half-line and intervals of the geometric stable process with parameter $\\alpha\\in(0,2]$. This process has an infinitesimal generator of the form $-\\log(1+(-\\Delta)^{\\alpha/2})$. As an application we prove the scale invariant Harnack inequality as well as the boundary Harnack principle.", "revisions": [ { "version": "v1", "updated": "2011-07-04T21:16:47.000Z" } ], "analyses": { "subjects": [ "60J45" ], "keywords": [ "one-dimensional geometric stable processes", "potential theory", "scale invariant harnack inequality", "boundary harnack principle", "infinitesimal generator" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 28, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.0745G" } } }