{ "id": "1107.0702", "version": "v1", "published": "2011-07-04T18:38:56.000Z", "updated": "2011-07-04T18:38:56.000Z", "title": "A remarkable contraction of semisimple Lie algebras", "authors": [ "Dmitri Panyushev", "Oksana Yakimova" ], "comment": "13 pages", "categories": [ "math.AG" ], "abstract": "Recently, E.Feigin introduced a very interesting contraction $\\mathfrak q$ of a semisimple Lie algebra $\\mathfrak g$ (see arXiv:1007.0646 and arXiv:1101.1898). We prove that these non-reductive Lie algebras retain good invariant-theoretic properties of $\\mathfrak g$. For instance, the algebras of invariants of both adjoint and coadjoint representations of $\\mathfrak q$ are free, and also the enveloping algebra of $\\mathfrak q$ is a free module over its centre.", "revisions": [ { "version": "v1", "updated": "2011-07-04T18:38:56.000Z" } ], "analyses": { "subjects": [ "14L30", "17B20" ], "keywords": [ "semisimple lie algebra", "non-reductive lie algebras retain", "invariant-theoretic properties", "coadjoint representations", "free module" ], "note": { "typesetting": "TeX", "pages": 13, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.0702P" } } }