{ "id": "1107.0228", "version": "v4", "published": "2011-07-01T14:04:37.000Z", "updated": "2015-01-22T16:52:36.000Z", "title": "From a kinetic equation to a diffusion under an anomalous scaling", "authors": [ "Giada Basile" ], "journal": "Annales de l'Institut Henri Poincar\\'e - Probabilit\\'es et Statistiques 2014, Vol. 50, No. 4, 1301-1322", "doi": "10.1007/s10955-013-0908-4", "categories": [ "math.PR" ], "abstract": "A linear Boltzmann equation is interpreted as the forward equation for the probability density of a Markov process (K(t), i(t), Y(t)), where (K(t), i(t)) is an autonomous reversible jump process, with waiting times between two jumps with finite expectation value but infinite variance, and Y(t) is an additive functional of K(t). We prove that under an anomalous rescaling Y converges in distribution to a two-dimensional Brownian motion. As a consequence, the appropriately rescaled solution of the Boltzmann equation converges to a diffusion equation.", "revisions": [ { "version": "v3", "updated": "2012-10-16T13:22:19.000Z", "comment": null, "journal": null, "doi": null }, { "version": "v4", "updated": "2015-01-22T16:52:36.000Z" } ], "analyses": { "keywords": [ "kinetic equation", "anomalous scaling", "boltzmann equation converges", "two-dimensional brownian motion", "finite expectation value" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.0228B" } } }