{ "id": "1107.0184", "version": "v2", "published": "2011-07-01T10:25:18.000Z", "updated": "2011-10-04T12:47:59.000Z", "title": "Regularity properties of Schrödinger operators", "authors": [ "Tao Ma", "P. R. Stinga", "J. L. Torrea", "Chao Zhang" ], "comment": "20 pages. To appear in Journal of Mathematical Analysis and Applications", "categories": [ "math.AP", "math.CA", "math.FA" ], "abstract": "Let L be a Schr\\\"odinger operator of the form L=-\\Delta+V, where the nonnegative potential V satisfies a reverse H\\\"older inequality. Using the method of L-harmonic extensions we study regularity estimates at the scale of adapted H\\\"older spaces. We give a pointwise description of L-H\\\"older spaces and provide some characterizations in terms of the growth of fractional derivatives of any order and Carleson measures. Applications to fractional powers of L and multipliers of Laplace transform type developed.", "revisions": [ { "version": "v2", "updated": "2011-10-04T12:47:59.000Z" } ], "analyses": { "keywords": [ "schrödinger operators", "regularity properties", "study regularity estimates", "l-harmonic extensions", "fractional derivatives" ], "note": { "typesetting": "TeX", "pages": 20, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1107.0184M" } } }