{ "id": "1106.6137", "version": "v1", "published": "2011-06-30T08:02:22.000Z", "updated": "2011-06-30T08:02:22.000Z", "title": "Variational destruction of invariant circles", "authors": [ "Lin Wang" ], "comment": "16 pages", "categories": [ "math.DS" ], "abstract": "We construct a sequence of generating functions $(h_n)_{n\\in\\N}$, arbitrarily close to an integrable system in the $C^r$ topology with $r<4$ for $n$ large enough. With the variational method, we prove that for a given rotation number $\\omega$ and $n$ large enough, the exact monotone area-preserving twist maps generated by $(h_n)_{n\\in\\N}$ admit no invariant circles with rotation number $\\omega$.", "revisions": [ { "version": "v1", "updated": "2011-06-30T08:02:22.000Z" } ], "analyses": { "keywords": [ "invariant circles", "variational destruction", "exact monotone area-preserving twist maps", "rotation number" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.6137W" } } }