{ "id": "1106.5677", "version": "v3", "published": "2011-06-28T14:15:44.000Z", "updated": "2013-01-14T20:58:24.000Z", "title": "Affine spherical homogeneous spaces with good quotient by a maximal unipotent subgroup", "authors": [ "Roman Avdeev" ], "comment": "v2: title and abstract changed; v3: 16 pages, minor corrections", "journal": "Sbornik: Mathematics, vol. 203 (2012), no. 11, 1535-1552", "doi": "10.1070/SM2012v203n11ABEH004274", "categories": [ "math.AG", "math.RT" ], "abstract": "For an affine spherical homogeneous space G/H of a connected semisimple algebraic group G, we consider the factorization morphism by the action on G/H of a maximal unipotent subgroup of G. We prove that this morphism is equidimensional if and only if the weight semigroup of G/H satisfies some simple condition.", "revisions": [ { "version": "v3", "updated": "2013-01-14T20:58:24.000Z" } ], "analyses": { "subjects": [ "14L30", "14M27", "14M17" ], "keywords": [ "maximal unipotent subgroup", "affine spherical homogeneous space g/h", "connected semisimple algebraic group" ], "tags": [ "journal article" ], "publication": { "journal": "Sbornik: Mathematics", "year": 2012, "month": "Nov", "volume": 203, "number": 11, "pages": 1535 }, "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012SbMat.203.1535A" } } }