{ "id": "1106.5634", "version": "v1", "published": "2011-06-28T12:02:43.000Z", "updated": "2011-06-28T12:02:43.000Z", "title": "On the Kawauchi conjecture about the Conway polynomial of achiral knots", "authors": [ "Nicola Ermotti", "Cam Van Quach Hongler", "Claude Weber" ], "comment": "8 pages, 6 figures", "categories": [ "math.GT" ], "abstract": "We give a counterexample to the Kawauchi conjecture on the Conway polynomial of achiral knots which asserts that the Conway polynomial $C(z)$ of an achiral knot satisfies the splitting property $C(z)=F(z)F(-z)$ for a polynomial $F(z)$ with integer coefficients. We show that the Bonahon-Siebenmann decomposition of an achiral and alternating knot is reflected in the Conway polynomial. More explicitly, the Kawauchi conjecture is true for quasi-arborescent knots and counterexamples in the class of alternating knots must be quasi-polyhedral.", "revisions": [ { "version": "v1", "updated": "2011-06-28T12:02:43.000Z" } ], "analyses": { "subjects": [ "57M25" ], "keywords": [ "conway polynomial", "kawauchi conjecture", "achiral knot satisfies", "alternating knot", "integer coefficients" ], "note": { "typesetting": "TeX", "pages": 8, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.5634E" } } }