{ "id": "1106.5103", "version": "v1", "published": "2011-06-25T05:27:14.000Z", "updated": "2011-06-25T05:27:14.000Z", "title": "On a conjecture of Kaneko and Ohno", "authors": [ "Zhong-hua Li" ], "comment": "10 pages", "categories": [ "math.NT" ], "abstract": "Let $X_0^{\\star}(k,n,s)$ denote the sum of all multiple zeta-star values of weight $k$, depth $n$ and height $s$. Kaneko and Ohno conjecture that for any positive integers $m,n,s$ with $m,n\\geqslant s$, the difference $(-1)^mX_0^{\\star}(m+n+1,n+1,s)-(-1)^nX_0^{\\star}(m+n+1,m+1,s)$ can be expressed as a polynomial of zeta values with rational coefficients. We give a proof of this conjecture in this paper.", "revisions": [ { "version": "v1", "updated": "2011-06-25T05:27:14.000Z" } ], "analyses": { "subjects": [ "11M32", "33C20" ], "keywords": [ "multiple zeta-star values", "ohno conjecture", "zeta values", "rational coefficients", "positive integers" ], "note": { "typesetting": "TeX", "pages": 10, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.5103L" } } }