{ "id": "1106.5036", "version": "v2", "published": "2011-06-24T19:00:52.000Z", "updated": "2012-03-26T18:31:55.000Z", "title": "Set partitions with no m-nesting", "authors": [ "Marni Mishna", "Lily Yen" ], "journal": "In Ilias S. Kotsireas and Eugene V. Zima, editors, Advances in Combinatorics, pages 249-258. Springer Berlin Heidelberg, 2013", "doi": "10.1007/978-3-642-30979-3_13", "categories": [ "math.CO" ], "abstract": "A partition on [n] has an m-nesting if there exists i_1 < i_2 < ... < i_m < j_m < j_{m-1} < ... < j_1, where i_l and j_l are in the same block for all 1 <= l <= m. We use generating trees to construct the class of partitions with no m-nesting and determine functional equations satisfied by the associated generating functions. We use algebraic kernel method together with a linear operator to describe a coefficient extraction process. This gives rise to enumerative data, and illustrates the increasing complexity of the coefficient formulas as m increases.", "revisions": [ { "version": "v2", "updated": "2012-03-26T18:31:55.000Z" } ], "analyses": { "subjects": [ "05A18" ], "keywords": [ "set partitions", "coefficient extraction process", "algebraic kernel method", "coefficient formulas", "determine functional equations" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.5036M" } } }