{ "id": "1106.4281", "version": "v1", "published": "2011-06-21T18:02:45.000Z", "updated": "2011-06-21T18:02:45.000Z", "title": "Convergence to type I distribution of the extremes of sequences defined by random difference equation", "authors": [ "Pawel Hitczenko" ], "comment": "to appear in Stochastic Processes and their Applications", "doi": "10.1016/j.spa.2011.06.007", "categories": [ "math.PR" ], "abstract": "We study the extremes of a sequence of random variables $(R_n)$ defined by the recurrence $R_n=M_nR_{n-1}+q$, $n\\ge1$, where $R_0$ is arbitrary, $(M_n)$ are iid copies of a non--degenerate random variable $M$, $0\\le M\\le1$, and $q>0$ is a constant. We show that under mild and natural conditions on $M$ the suitably normalized extremes of $(R_n)$ converge in distribution to a double exponential random variable. This partially complements a result of de Haan, Resnick, Rootz\\'en, and de Vries who considered extremes of the sequence $(R_n)$ under the assumption that $\\P(M>1)>0$.", "revisions": [ { "version": "v1", "updated": "2011-06-21T18:02:45.000Z" } ], "analyses": { "subjects": [ "60G70", "60F05" ], "keywords": [ "random difference equation", "distribution", "convergence", "iid copies" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.4281H" } } }