{ "id": "1106.4171", "version": "v2", "published": "2011-06-21T11:15:03.000Z", "updated": "2012-07-02T13:15:57.000Z", "title": "Haag duality and the distal split property for cones in the toric code", "authors": [ "Pieter Naaijkens" ], "comment": "15 pages, 2 figures, v2: extended introduction", "journal": "Lett. Math. Phys. 101 (2012), 341-354", "doi": "10.1007/s11005-012-0572-7", "categories": [ "math-ph", "math.MP", "math.OA", "quant-ph" ], "abstract": "We prove that Haag duality holds for cones in the toric code model. That is, for a cone Lambda, the algebra R_Lambda of observables localized in Lambda and the algebra R_{Lambda^c} of observables localized in the complement Lambda^c generate each other's commutant as von Neumann algebras. Moreover, we show that the distal split property holds: if Lambda_1 \\subset Lambda_2 are two cones whose boundaries are well separated, there is a Type I factor N such that R_{Lambda_1} \\subset N \\subset R_{Lambda_2}. We demonstrate this by explicitly constructing N.", "revisions": [ { "version": "v2", "updated": "2012-07-02T13:15:57.000Z" } ], "analyses": { "subjects": [ "81R15", "46L60", "81T05", "82B20" ], "keywords": [ "distal split property holds", "toric code model", "haag duality holds", "von neumann algebras", "cone lambda" ], "tags": [ "journal article" ], "publication": { "journal": "Letters in Mathematical Physics", "year": 2012, "month": "Sep", "volume": 101, "number": 3, "pages": 341 }, "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2012LMaPh.101..341N" } } }