{ "id": "1106.3984", "version": "v1", "published": "2011-06-20T18:37:20.000Z", "updated": "2011-06-20T18:37:20.000Z", "title": "Ghirlanda-Guerra identities and ultrametricity: An elementary proof in the discrete case", "authors": [ "Dmitry Panchenko" ], "journal": "C. R. Acad. Sci. Paris, Ser. I {349} (2011) 813-816", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "In this paper we give another proof of the fact that a random overlap array, which satisfies the Ghirlanda-Guerra identities and whose elements take values in a finite set, is ultrametric with probability one. The new proof bypasses random change of density invariance principles for directing measures of such arrays and, in addition to the Dobvysh-Sudakov representation, is based only on elementary algebraic consequences of the Ghirlanda-Guerra identities.", "revisions": [ { "version": "v1", "updated": "2011-06-20T18:37:20.000Z" } ], "analyses": { "subjects": [ "60K35", "82B44" ], "keywords": [ "ghirlanda-guerra identities", "discrete case", "elementary proof", "ultrametricity", "proof bypasses random change" ], "tags": [ "journal article" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.3984P" } } }