{ "id": "1106.3376", "version": "v2", "published": "2011-06-17T02:23:14.000Z", "updated": "2011-08-12T07:06:53.000Z", "title": "The dimer model on the triangular lattice", "authors": [ "N. Sh. Izmailian", "Ralph Kenna" ], "comment": "15 pages, 4 figures", "journal": "Phys. Rev. E 84, 021107 (2011)", "categories": [ "cond-mat.stat-mech" ], "abstract": "We analyze the partition function of the dimer model on an $\\mathcal{M} \\times \\mathcal{N}$ triangular lattice wrapped on torus obtained by Fendley, Moessner and Sondhi [Phys. Rev. B \\textbf{66}, 214513 (2002)]. From a finite-size analysis we have found that the dimer model on such a lattice can be described by conformal field theory having central charge $c=1$. The shift exponent for the specific heat is found to depend on the parity of the number of lattice sites $\\mathcal{N}$ along a given lattice axis: e.g., for odd $\\mathcal{N}$ we obtain the shift exponent $\\lambda=1$, while for even $\\mathcal{N}$ it is infinite ($\\lambda=\\infty$). In the former case, therefore, the finite-size specific-heat pseudocritical point is size dependent, while in the latter case, it coincides with the critical point of the thermodynamic limit.", "revisions": [ { "version": "v2", "updated": "2011-08-12T07:06:53.000Z" } ], "analyses": { "subjects": [ "05.50.+q", "75.10.-b" ], "keywords": [ "dimer model", "shift exponent", "conformal field theory", "partition function", "specific heat" ], "tags": [ "journal article" ], "publication": { "publisher": "APS", "journal": "Physical Review E", "doi": "10.1103/PhysRevE.84.021107", "year": 2011, "month": "Aug", "volume": 84, "number": 2, "pages": "021107" }, "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011PhRvE..84b1107I" } } }