{ "id": "1106.3116", "version": "v1", "published": "2011-06-15T22:53:18.000Z", "updated": "2011-06-15T22:53:18.000Z", "title": "Special framed Morse functions on surfaces", "authors": [ "Elena A. Kudryavtseva" ], "comment": "8 pages, in Russian", "categories": [ "math.GT", "math.AT" ], "abstract": "Let $M$ be a smooth closed orientable surface. Let $F$ be the space of Morse functions on $M$, and $\\mathbb{F}^1$ the space of framed Morse functions, both endowed with $C^\\infty$-topology. The space $\\mathbb{F}^0$ of special framed Morse functions is defined. We prove that the inclusion mapping $\\mathbb{F}^0\\hookrightarrow\\mathbb{F}^1$ is a homotopy equivalence. In the case when at least $\\chi(M)+1$ critical points of each function of $F$ are labeled, homotopy equivalences $\\mathbb{\\widetilde K}\\sim\\widetilde{\\cal M}$ and $F\\sim\\mathbb{F}^0\\sim{\\mathscr D}^0\\times\\mathbb{\\widetilde K}$ are proved, where $\\mathbb{\\widetilde K}$ is the complex of framed Morse functions, $\\widetilde{\\cal M}\\approx\\mathbb{F}^1/{\\mathscr D}^0$ is the universal moduli space of framed Morse functions, ${\\mathscr D}^0$ is the group of self-diffeomorphisms of $M$ homotopic to the identity.", "revisions": [ { "version": "v1", "updated": "2011-06-15T22:53:18.000Z" } ], "analyses": { "subjects": [ "58E05", "57M50", "58K65", "46M18" ], "keywords": [ "special framed morse functions", "homotopy equivalence", "universal moduli space", "smooth closed orientable surface", "critical points" ], "note": { "typesetting": "TeX", "pages": 8, "language": "ru", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.3116K" } } }