{ "id": "1106.2859", "version": "v1", "published": "2011-06-15T02:45:30.000Z", "updated": "2011-06-15T02:45:30.000Z", "title": "Description of generalized Albanese varieties by curves", "authors": [ "Henrik Russell" ], "comment": "15 pages", "categories": [ "math.AG" ], "abstract": "Let X be a projective variety over an algebraically closed base field, possibly singular. The aim of this paper is to show that the generalized Albanese variety of Esnault-Srinivas-Viehweg can be computed from one general curve C in X, if the base field is of characteristic 0. We illustrate this by an example, which we also use to unravel some mysterious properties of the Albanese of Esnault-Srinivas-Viehweg.", "revisions": [ { "version": "v1", "updated": "2011-06-15T02:45:30.000Z" } ], "analyses": { "subjects": [ "14L10", "14L05", "14C20" ], "keywords": [ "generalized albanese variety", "description", "algebraically closed base field", "esnault-srinivas-viehweg", "general curve" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable", "adsabs": "2011arXiv1106.2859R" } } }